Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 16(9): e0257468, 2021.
Article in English | MEDLINE | ID: covidwho-1406756

ABSTRACT

BACKGROUND: Face masks, also referred to as half masks, are essential to protect healthcare professionals working in close contact with patients with COVID-19-related symptoms. Because of the Corona material shortages, healthcare institutions sought an approach to reuse face masks or to purchase new, imported masks. The filter quality of these masks remained unclear. Therefore, the aim of this study was to assess the quality of sterilized and imported FFP2/KN95 face masks. METHODS: A 48-minute steam sterilization process of single-use FFP2/KN95 face masks with a 15 minute holding time at 121°C was developed, validated and implemented in the Central Sterilization Departments (CSSD) of 19 different hospitals. Masks sterilized by steam and H2O2 plasma as well as new, imported masks were tested for particle filtration efficiency (PFE) and pressure drop in a custom-made test setup. RESULTS: The results of 84 masks tested on the PFE dry particle test setup showed differences of 2.3±2% (mean±SD). Test data showed that the mean PFE values of 444 sterilized FFP2 face masks from the 19 CSSDs were 90±11% (mean±SD), and those of 474 new, imported KN95/FFP2 face masks were 83±16% (mean±SD). Differences in PFE of masks received from different sterilization departments were found. CONCLUSION: Face masks can be reprocessed with 121 °C steam or H2O2 plasma sterilization with a minimal reduction in PFE. PFE comparison between filter material of sterilized masks and new, imported masks indicates that the filter material of most reprocessed masks of high quality brands can outperform new, imported face masks of unknown brands. Although the PFE of tested face masks from different sterilization departments remained efficient, using different types of sterilization equipment, can result in different PFE outcomes.


Subject(s)
COVID-19/prevention & control , Masks , Sterilization , COVID-19/transmission , Equipment Reuse , Health Personnel , Humans , Hydrogen Peroxide , Masks/standards , SARS-CoV-2/physiology , Steam , Sterilization/standards
2.
Sci Rep ; 11(1): 17680, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1392893

ABSTRACT

The Covid-19 pandemic led to threatening shortages in healthcare of medical products such as face masks. Due to this major impact on our healthcare society an initiative was conducted between March and July 2020 for reprocessing of face masks from 19 different hospitals. This exceptional opportunity was used to study the costs impact and the carbon footprint of reprocessed face masks relative to new disposable face masks. The aim of this study is to conduct a Life Cycle Assessment (LCA) to assess and compare the climate change impact of disposed versus reprocessed face masks. In total 18.166 high quality medical FFP2 face masks were reprocessed through steam sterilization between March and July 2020. Greenhouse gas emissions during production, transport, sterilization and end-of-life processes were assessed. The background life cycle inventory data were retrieved from the ecoinvent database. The life cycle impact assessment method ReCiPe was used to translate emissions into climate change impact. The cost analysis is based on actual sterilization as well as associated costs compared to the prices of new disposable face masks. A Monte Carlo sampling was used to propagate the uncertainty of different inputs to the LCA results. The carbon footprint appears to be 58% lower for face masks which were reused for five times compared to new face masks which were used for one time only. The sensitivity analysis indicated that the loading capacity of the autoclave and rejection rate of face masks has a large influence on the carbon footprint. The estimated cost price of a reprocessed mask was €1.40 against €1.55. The Life Cycle Assessment demonstrates that reprocessed FFP2 face masks from a circular economy perspective have a lower climate change impact on the carbon footprint than new face masks. For policymakers it is important to realize that the carbon footprint of medical products such as face masks may be reduced by means of circular economy strategies. This study demonstrated a lower climate change impact and lower costs when reprocessing and reusing disposable face masks for five times. Therefore, this study may serve as an inspiration for investigating reprocessing of other medical products that may become scarce. Finally, this study advocates that circular design engineering principles should be taken into account when designing medical devices. This will lead to more sustainable products that have a lower carbon footprint and may be manufactured at lower costs.


Subject(s)
COVID-19 , Equipment Reuse/economics , Masks/economics , Pandemics , SARS-CoV-2 , Sterilization/economics , COVID-19/economics , COVID-19/epidemiology , COVID-19/prevention & control , Humans
SELECTION OF CITATIONS
SEARCH DETAIL